If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (z2 + 5z + 8)(z * 2 + 2z + 6) = 0 Reorder the terms: (8 + 5z + z2)(z * 2 + 2z + 6) = 0 Reorder the terms for easier multiplication: (8 + 5z + z2)(2z + 2z + 6) = 0 Reorder the terms: (8 + 5z + z2)(6 + 2z + 2z) = 0 Combine like terms: 2z + 2z = 4z (8 + 5z + z2)(6 + 4z) = 0 Multiply (8 + 5z + z2) * (6 + 4z) (8(6 + 4z) + 5z * (6 + 4z) + z2(6 + 4z)) = 0 ((6 * 8 + 4z * 8) + 5z * (6 + 4z) + z2(6 + 4z)) = 0 ((48 + 32z) + 5z * (6 + 4z) + z2(6 + 4z)) = 0 (48 + 32z + (6 * 5z + 4z * 5z) + z2(6 + 4z)) = 0 (48 + 32z + (30z + 20z2) + z2(6 + 4z)) = 0 (48 + 32z + 30z + 20z2 + (6 * z2 + 4z * z2)) = 0 (48 + 32z + 30z + 20z2 + (6z2 + 4z3)) = 0 Combine like terms: 32z + 30z = 62z (48 + 62z + 20z2 + 6z2 + 4z3) = 0 Combine like terms: 20z2 + 6z2 = 26z2 (48 + 62z + 26z2 + 4z3) = 0 Solving 48 + 62z + 26z2 + 4z3 = 0 Solving for variable 'z'. Factor out the Greatest Common Factor (GCF), '2'. 2(24 + 31z + 13z2 + 2z3) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(24 + 31z + 13z2 + 2z3)' equal to zero and attempt to solve: Simplifying 24 + 31z + 13z2 + 2z3 = 0 Solving 24 + 31z + 13z2 + 2z3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 1/3=14/b | | 1/2x-3/4x | | 4(x+5)=3(x-2)2(x+2) | | 16/48=v/12 | | x+x*.2=650 | | 12+n=24 | | 559-q=53 | | B+4-12=4(2+11b)+9(8-6b) | | 8/w=2/7 | | 70-t=35 | | C(t)=6t-180 | | (4x+5)(2x-1)=4 | | 4/5×1/2 | | 7.3N-2=16 | | -4.317+5=18.646489+k(-4.317)+30 | | 21/15=7/r | | (-7+3i)+(9-5i)= | | 16x^2-32=65 | | h/12=5/3 | | 4(x+1)=6(y+2) | | 2m+8=7m-37 | | 10x+60[10-x]=250 | | 4(x+1)=6(y+3) | | 6q^2-3q=5q^2-5q+48 | | 9-12=19 | | 1/6=8/t | | 2y(y+13)-136=0 | | -63=-3(k-58) | | -4.317+5=E^2+k(-4.317)+30 | | c/22=5/11 | | X^2+7=309 | | 6/y=1/3 |